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Module 2: Analysis of Stress                     
 
2.1.1    INTRODUCTION 

 body under the action of external forces, undergoes distortion and the effect due to this 
system of forces is transmitted throughout the body developing internal forces in it. To 

examine these internal forces at a point O in Figure 2.1 (a), inside the body, consider a plane 
MN passing through the point O.  If the plane is divided into a number of small areas, as in 
the Figure 2.1 (b), and the forces acting on each of these are measured, it will be observed 
that these forces vary from one small area to the next.  On the small area AD  at point O, a 
force FD will be acting as shown in the Figure 2.1 (b). From this the concept of stress as the 
internal force per unit area can be understood. Assuming that the material is continuous, the 
term "stress" at any point across a small area AD  can be defined by the limiting equation as 
below.  

 

(a)                                               (b) 

                                                     Figure 2.1 Forces acting on a body 
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where DF is the internal force on the area DA surrounding the given point. Stress is 
sometimes referred to as force intensity. 
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2.1.2    NOTATION OF STRESS 

Here, a single suffix  for notation s, like zyx sss ,, , is used for the direct stresses and 

double suffix for notation is used for shear stresses like ,, xzxy tt  etc. xyt  means a stress, 

produced by an internal force in the direction of Y, acting on a surface, having a normal in 
the direction  of  X.   
 
2.1.3 CONCEPT OF DIRECT STRESS AND SHEAR STRESS 

 

Figure 2.2 Force components of DF acting on small area centered on point O 

Figure 2.2 shows the rectangular components of the force vector DF referred to 

corresponding axes. Taking the ratios 
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,, , we have three quantities that 

establish the average intensity of the force on the area DAx. In the limit as DA®0, the above 
ratios define the force intensity acting on the X-face at point O. These values of the three 
intensities are defined as the "Stress components" associated with the X-face at point O.   
The stress components parallel to the surface are called "Shear stress components" denoted 
by t. The shear stress component acting on the X-face in the y-direction is identified as txy. 

The stress component perpendicular to the face is called  "Normal Stress" or "Direct stress" 
component and is denoted by s. This is identified as sx along X-direction.  
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From the above discussions, the stress components on the X -face at point O are defined as 
follows in terms of force intensity ratios 
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The above stress components are illustrated in the Figure 2.3 below.   
 

 

Figure 2.3 Stress components at point O 
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2.1.4    STRESS TENSOR 

Let O be the point in a body shown in Figure 2.1 (a).  Passing through that point, infinitely 
many planes may be drawn.  As the resultant forces acting on these planes is the same, the 
stresses on these planes are different because the areas and the inclinations of these planes 
are different.  Therefore, for a complete description of stress, we have to specify not only its 
magnitude, direction and sense but also the surface on which it acts. For this reason, the 
stress is called a "Tensor".  

 

 

Figure 2.4 Stress components acting on parallelopiped 

Figure 2.4 depicts three-orthogonal co-ordinate planes representing a parallelopiped on  
which are nine components of stress. Of these three are direct stresses and six are shear 
stresses. In tensor notation, these can be expressed by the tensor tij, where i = x, y, z and j = 
x, y, z. 

In matrix notation, it is often written as      
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It is also written as   
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2.1.5    SPHERICAL AND DEVIATORIAL STRESS TENSORS 

A general stress-tensor can be conveniently divided into two parts as shown above. Let us 
now define a new stress term (sm) as the mean stress, so that 

sm = 
3

zyx sss ++
                                   (2.4) 

Imagine a hydrostatic type of stress having all the normal stresses equal to sm, and all  
the shear stresses are zero. We can divide the stress tensor into two parts, one having  
only the "hydrostatic stress" and the other, "deviatorial stress". The hydrostatic type of  
stress is given by  
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The deviatorial type of stress is given by 
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Here the hydrostatic type of stress is known as "spherical stress tensor" and the other is 
known as the "deviatorial stress tensor". 

It will be seen later that the deviatorial part produces changes in shape of the body and 
finally causes failure.  The spherical part is rather harmless, produces only uniform volume 
changes without any change of shape, and does not necessarily cause failure. 
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2.1.6    INDICIAL NOTATION 

An alternate notation called index or indicial notation for stress is more convenient for 
general discussions in elasticity.  In indicial notation, the co-ordinate axes x, y and z are 
replaced by numbered axes x1, x2 and x3 respectively. The components of the force DF of 
Figure 2.1 (a) is written as DF1, DF2 and DF3, where the numerical subscript indicates the 
component with respect to the numbered coordinate axes. 

The definitions of the components of stress acting on the face x1can be written in indicial 
form as follows:                                                  
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Here, the symbol s is used for both normal and shear stresses. In general, all components of 
stress can now be defined by a single equation as below. 
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Here i and j take on the values 1, 2 or 3. 
 
2.1.7    TYPES OF STRESS  

Stresses may be classified in two ways, i.e., according to the type of body on which they act, 
or the nature of the stress itself.  Thus stresses could be one-dimensional, two-dimensional or 
three-dimensional as shown in the Figure 2.5.  

 

 

(a) One-dimensional Stress 
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         (b) Two-dimensional Stress                                               (c) Three-dimensional Stress 

Figure 2.5 Types of Stress 

 2.1.8    TWO-DIMENSIONAL STRESS AT A POINT 

A two-dimensional state-of-stress exists when the stresses and body forces are independent 
of one of the co-ordinates.  Such a state is described by stresses yx ss , and txy and the X 
and Y body forces (Here z is taken as the independent co-ordinate axis). 

We shall now determine the equations for transformation of the stress components 

yx ss , and txy at any point of a body represented by infinitesimal element as shown in the 

Figure 2.6. 

 
Figure 2.6 Thin body subjected to stresses in xy plane                                          
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Figure 2.7 Stress components acting on faces of a small                                                                       
wedge cut from body of Figure 2.6 

 

 

Consider an infinitesimal wedge as shown in Fig.2.7 cut from the loaded body  in Figure 2.6. 

It is required to determine the stresses x¢s  and yx ¢¢t , that refer to axes yx ¢¢,  making an 

angle q with axes X, Y as shown in the Figure.  Let side MN be normal to the x ¢axis.  

Considering x¢s and yx ¢¢t as positive and area of side MN as unity, the sides MP and PN have 

areas cosq and sinq, respectively.  

Equilibrium of the forces in the x and y directions requires that 

Tx = sx cosq + txy sinq       

Ty = txy cosq + sy sinq                 (2.9) 
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where Tx and Ty are the components of stress resultant acting on MN in the x and y 
directions respectively.  The normal and shear stresses on the x' plane (MN plane) are 

obtained by projecting Tx and Ty in the x ¢  and y¢  directions. 

x¢s  = Tx cosq + Ty sinq                                                                                    (2.10) 

yx ¢¢t = Ty cosq - Tx sinq                      

Upon substitution of stress resultants from Equation (2.9), the Equations (2.10) become 

x¢s = s 
x cos2q + sy sin2q + 2txy sinq cosq 

yx ¢¢t = 
xyt  (cos2q - sin2q )+(sy -sx) sinq cosq                                       (2.11) 

The stress y¢s  is obtained by substituting ÷
ø
ö

ç
è
æ +

2
pq  for q in the expression for x¢s . 

By means of trigonometric identities 

cos2q = 
2
1

(1+cos2q), sinq cosq = 
2
1

sin2q,               (2.12) 

sin2q = 
2
1

(1-cos2q) 

The transformation equations for stresses are now written in the following form: 

( ) ( ) qtqsssss 2sin2cos
2
1

2
1

xyyxyxx +-++=¢                                             (2.12a) 

( ) ( ) qtqsssss 2sin2cos
2
1

2
1

xyyxyxy ---+=¢                                              (2.12b) 

( ) qtqsst 2cos2sin
2
1

xyyxyx +--=¢¢                                                                       (2.12c) 

 
2.1.9    PRINCIPAL STRESSES IN TWO DIMENSIONS 

To ascertain the orientation of yx ¢¢  corresponding to maximum or minimum x¢s , the 

necessary condition 0=¢
q
s
d

d x , is applied to Equation (2.12a), yielding 

-(sx -sy) sin2q + 2txy cos2q = 0                           (2.13) 

Therefore, tan 2q = 
yx

xy

ss
t
-

2
                                   (2.14) 

As 2q = tan (p +2q), two directions, mutually perpendicular, are found to satisfy equation 
(2.14). These are the principal directions, along which the principal or maximum and 
minimum normal stresses act. 
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When Equation (2.12c) is compared with Equation (2.13), it becomes clear that 0=¢¢yxt  on 

a principal plane.  A principal plane is thus a plane of zero shear. The principal stresses are 
determined by substituting Equation (2.14) into Equation (2.12a) 

s1,2 = 
2

yx ss +
 ± 2

2

2 xy
yx t

ss
+÷÷

ø

ö
çç
è

æ -
                          (2.15) 

Algebraically, larger stress given above is the maximum principal stress, denoted by s1.  
The minimum principal stress is represented by s2.  

Similarly, by using the above approach and employing Equation (2.12c), an expression for 
the maximum shear stress may also be derived.  
 
2.1.10    CAUCHY’S STRESS PRINCIPLE 

According to the general theory of stress by Cauchy (1823), the stress principle can be stated 
as follows: 

Consider any closed surface S¶ within a continuum of region B that separates the region B 
into subregions B1 and B2.  The interaction between these subregions can be represented by a 

field of stress vectors ( )nT ˆ  defined on S¶ . By combining this principle with Euler’s 

equations that expresses balance of linear momentum and moment of momentum in any kind 
of body, Cauchy derived the following relationship.  

T ( )n̂  = -T ( )n̂-  
T ( )n̂  = sT ( )n̂                 (2.16) 

where ( )n̂  is the unit normal to S¶  and s is the stress matrix.  Furthermore, in regions 
where the field variables have sufficiently smooth variations to allow spatial derivatives upto 
any order, we have 

rA = div s + f                                                                                                (2.17) 

where r = material mass density 
           A = acceleration field 
            f = Body force per unit volume.  

This result expresses a necessary and sufficient condition for the balance of linear 
momentum. When expression (2.17) is satisfied, 

s = s T                  (2.18) 
which is equivalent to the balance of moment of momentum with respect to an arbitrary 
point.  In deriving (2.18), it is implied that there are no body couples.  If body couples and/or 
couple stresses are present, Equation (2.18) is modified but Equation (2.17) remains 
unchanged.  

Cauchy Stress principle has four essential ingradients 
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(i) The physical dimensions of stress are (force)/(area). 
(ii) Stress is defined on an imaginary surface that separates the region under consideration 

into two parts. 
(iii) Stress is a vector or vector field equipollent to the action of one part of the material on 

the other. 

(iv) The direction of the stress vector is not restricted.  
 
2.1.11    DIRECTION COSINES 

Consider a plane ABC having an outward normal n. The direction of this normal can be 
defined in terms of direction cosines. Let the angle of inclinations of the normal with x, y and 

z  axes be ba ,  and g  respectively. Let ( )zyxP ,,  be a point on the normal at a radial 

distance r from the origin O. 

 

Figure 2.8 Tetrahedron with arbitrary plane 
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From figure, 
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x
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=gcos  

or ba cos,cos ryrx ==  and gcosrz =  

Let ml == ba cos,cos   and  n=gcos  

Therefore, m
r
y

l
r
x

== , and n
r
z
=  

Here, l, m and n are known as direction cosines of the line OP. Also, it can be written as 

 2222 rzyx =++  (since r is the polar co-ordinate of P) 

or 12
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 1222 =++ nml  

2.1.12    STRESS COMPONENTS ON AN ARBITRARY PLANE 

Consider a small tetrahedron isolated from a continuous medium (Figure 2.9) subjected to a 
general state of stress. The body forces are taken to be negligible. Let the arbitrary plane 
ABC be identified by its outward normal n whose direction cosines are l, m and n. 

In the Figure 2.9, zyx TTT ,, are the Cartesian components of stress resultant T, acting on 

oblique plane ABC. It is required to relate the stresses on the perpendicular planes 
intersecting at the origin to the normal and shear stresses acting on ABC. 

The orientation of the plane ABC may be defined in terms of the angle between a unit 
normal n to the plane and the x, y, z directions.  The direction cosines associated with these 
angles are 

cos (n, x) = l  
cos (n, y) = m       and                                                                       (2.19) 
cos (n, z) = n  

The three direction cosines for the n direction are related by   

l2 + m2 + n2 = 1                               (2.20) 
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Figure 2.9 Stresses acting on face of the tetrahedron 

 

The area of the perpendicular plane PAB, PAC, PBC may now be expressed in terms of A, 
the area of ABC, and the direction cosines. 

Therefore, Area of PAB = APAB = Ax = A.i 

   = A (li + mj + nk) i 

     Hence,   APAB = Al 

The other two areas are similarly obtained.  In doing so, we have altogether 

APAB = Al, APAC = Am, APBC = An                                   (2.21) 

Here i, j and k are unit vectors in x, y and z directions, respectively. 

Now, for equilibrium of the tetrahedron, the sum of forces in x, y and z directions must  
be zero. 

Therefore, Tx A = sx Al + txy Am + txz An            (2.22) 
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Dividing throughout by A, we get 
Tx = sx l + txy m + txz n                                     (2.22a)  

Similarly, for equilibrium in y and z directions,  
Ty = txy l + sy m + tyz n                                  (2.22b) 

Tz = txz l + tyz m + sz
 n                                             (2.22c) 

The stress resultant on A is thus determined on the basis of known stresses ,,, zyx sss  

zxyzxy ttt ,, and a knowledge of the orientation of A. 

The Equations (2.22a), (2.22b) and (2.22c) are known as Cauchy’s stress formula. These 
equations show that the nine rectangular stress components at P will enable one to determine 
the stress components on any arbitrary plane passing through point P.  
 
2.1.13  STRESS TRANSFORMATION 

When the state or stress at a point is specified in terms of the six components with reference 
to a given co-ordinate system, then for the same point, the stress components with reference 
to another co-ordinate system obtained by rotating the original axes can be determined using 
the direction cosines. 

Consider a cartesian co-ordinate system X, Y and Z as shown in the Figure 2.10. Let this 
given co-ordinate system be rotated to a new co-ordinate system z,y,x ¢¢¢  where  

in x¢  lie on an oblique plane. z,y,x ¢¢¢ and X, Y, Z systems are related by the direction 

cosines. 

l1 = cos ( x¢ , X) 
m1 = cos ( x¢ , Y)                                                                     (2.23) 
n1 = cos ( x¢ , Z) 

(The notation corresponding to a complete set of direction cosines is shown in  
Table 1.0).  

Table 1.0 Direction cosines relating different axes 

 X Y Z 

'x  
l1 m1 n1 

y¢  
 

l2 m2 n2 

z¢  l3 m3 n3 
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Figure 2.10 Transformation of co-ordinates 

The normal stress x¢s  is found by projecting yx TT , and Tz in the x¢ direction and adding: 

x¢s  = Tx l1 + Ty m1 + Tz n1                            (2.24) 

Equations (2.22a), (2.22b), (2.22c) and (2.24) are combined to yield  

x¢s  = sx
  l 2

1  + sy m 2
1  + sz n 2

1  + 2(txy l1 m1 +tyz  m1 n1 + txz  l1 n1)                       (2.25) 

Similarly by projecting zyx TTT ,, in the y¢  and z¢  directions, we obtain, respectively 

yx ¢¢t =sx l1 l2+sy m1 m2+sz n1 n2+txy (l1 m2+ m1 l2)+tyz (m1 n2 + n1 m2 ) + txz (n1l2 + l1n2)                                                                                                        
                           (2.25a) 

zx ¢¢t  =sx l1 l3 +sy m1 m3+sz n1 n3 +txy (l1 m3 + m1 l3)+tyz (m1 n3 + n1 m3)+txz (n1 l3+ l1 n3)
                                                                                                                             (2.25b) 

Recalling that the stresses on three mutually perpendicular planes are required to specify the 
stress at a point (one of these planes being the oblique plane in question), the remaining 
components are found by considering those planes perpendicular to the oblique plane.  For 
one such plane n would now coincide with y¢  direction, and expressions for the stresses 
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zyyy ¢¢¢¢ tts ,, would be derived. In a similar manner the stresses yzxzz ¢¢¢¢¢ tts ,,  are 

determined when n coincides with the z¢  direction.  Owing to the symmetry of stress tensor, 
only six of the nine stress components thus developed are unique.  The remaining stress 
components are as follows:  

y¢s  = sx l 2
2   + sy m 2

2  + sz n 2
2  + 2 (txy l2 m2 + tyz m2 n2 + txz l2  n2)                          (2.25c) 

z¢s  = sx l
2
3   + sy m

2
3  + sz n

2
3  + 2 (txy l3 m3 + tyz m3 n3 + txz l3  n3)                     (2.25d) 

zy ¢¢t = sx l2 l3 +sy m2 m3 +sz n2 n3+txy (m2 l3 + l2 m3)+tyz (n2 m3 + m2 n3)+txz (l2 n3 + n2 l3)
                                                                                                                 (2.25e) 

The Equations (2.25 to 2.25e) represent expressions transforming the quantities 

xzyzxyyx tttss ,,,,  to completely define the state of stress.  

It is to be noted that, because x¢ , y¢  and z¢  are orthogonal, the nine direction cosines must 

satisfy trigonometric relations of the following form.  

l 2
i + m 2

i  + n 2
i  = 1  (i = 1,2,3) 

and  l1 l2 + m1 m2 + n1 n2 = 0 

             l2 l3 + m2 m3 + n2 n3 = 0                                (2.26) 

l1 l3 + m1 m3 + n1 n3 = 0 
 


